

No Tux Given
Diving Into Contemporary
Linux Kernel Exploitation

Sam Page, #TyphoonCon23

About Me

● Sam (@sam4k1)

● Background in VR and exploit dev

● I like Linux, security, games & food

What Are We Doing Here?

● Exploring the past, present & future of kernel security & xdev

● Hopefully making an increasingly complex topic more accessible

● Do we need any more reasons??? This stuff is awesome!

Tl;dr kernel exploits??

bug(s) alter kernel state privileged action

Tl;dr kernel exploits??

bug(s) alter kernel state privileged action

stack buffer overflow control-flow hijacking elevated process privs

Tl;dr kernel exploits??

OOB Write msg_msg len
corruption

KASLR leak

OOB Write msg_msg len
corruption

Root shell

overwrite
modprobe_path

OOB Read

AAW

FUSE

Tux’s Security Past
Examining Historical Kernel Exploitation Trends

Mitigations

● A graph of mitigations over time; highlighting key points

Data: kconfig-hardened-check[1], LKDDb[2]

Mitigations

● A graph of mitigations over time; highlighting key points

Data: kconfig-hardened-check[1], LKDDb[2]

StackGuard

1998

Mitigations

● A graph of mitigations over time; highlighting key points

Data: kconfig-hardened-check[1], LKDDb[2]

StackGuard

SMEP

1998

Mitigations

● A graph of mitigations over time; highlighting key points

Data: kconfig-hardened-check[1], LKDDb[2]

StackGuard

SMEP

SMAP

1998

Mitigations

● A graph of mitigations over time; highlighting key points

Data: kconfig-hardened-check[1], LKDDb[2]

StackGuard

SMEP

SMAP

KASLR

1998

Mitigations

● A graph of mitigations over time; highlighting key points

Data: kconfig-hardened-check[1], LKDDb[2]

StackGuard

SMEP

SMAP

KASLR

FORTIFY_SOURCE

1998

Bug Trends

● A graph of mitigations over time; highlighting key points

Data: gsd-database[3]

Bug Trends

● A graph of mitigations over time; highlighting key points

Data: gsd-database[3], torvalds/linux[4]

Bug Trends

Data: gsd-database[3]

Tux’s Security Present
Looking At Contemporary Kernel Exploitation

Kernel Exploits in 2023 | The Process

The process of getting from bug to privesc has become more complex:

1) Need to understand the attack surface

2) Find yourself some bugs (ezpz right?)

3) Figure out how, and what you need, to exploit it

● Typically takes knowledge of platform/surface/bug and existing techniques

4) Actually get a (reliably??) working proof-of-concept

Kernel Exploits in 2023 | The Mindset

● Curiosity! Ask questions and take the time to understand

● Patience helps too, as sometimes there are no solutions

● Document, document, document! You’ll thank yourself

● Opt for generic tooling and techniques where possible, to reuse

● The kernel is unforgiving of mistakes and unexpected behaviour!

Understanding The Attack Surface

● Informs where to look for bugs, what to look for and how to exploit them

● Lots of factors to consider: Kconfig, arch, platform specifics, 3rd parties etc.

● Varies greatly across desktop, android, IoT

Finding Some Bugs | Approaches

● Doesn’t have to be 0days! Syzbot dashboard, silent fixes, n-days etc.

● QEMU + gdb make it easy to dig deeper and do some dynamic analysis

● Time spent understanding the bug & surface will help going forward

● Factor in surface/mitigations when thinking about what to look for

Finding Some Bugs | Tools & Tips

But if you do want a shiny 0day there’s…

● Good ol’ fashioned code auditing

● CodeQL to help flag areas of interest or check for specific patterns

● Spin up your own modified syzkaller instance

● Adding coverage for areas without descriptions (e.g. 3rd party drivers)

● Extending coverage for more tailored fuzzing using platform knowledge

From Bug To #

● Bug provides our initial primitive

● Generic techniques & strategies to leveraging particular primitives

● With each surface/bug often having its own nuances & requirements

● Goal is to chain these together to ultimately privesc

● Typically via elevating our procs privs or executing another bin with privs

Exploiting UAFs | Getting Our Bearings

● Can cause the kernel to do some action(s) on previously freed memory

● So we need to think about how the kernel allocates this memory:

Exploiting UAFs | Getting Our Bearings

● Can cause the kernel to do some action(s) on previously freed memory

● So we need to think about how the kernel allocates this memory:

● SLUB allocator: used for small, commonly used objects

Exploiting UAFs | Getting Our Bearings

● Can cause the kernel to do some action(s) on previously freed memory

● So we need to think about how the kernel allocates this memory:

● Page allocator: handles larger, contiguous allocs (including slabs!)

(Where chunk size = 2order * PAGE_SIZE)

Exploiting UAFs | Getting Our Bearings

● Can cause the kernel to do some action(s) on previously freed memory

● So we need to think about how the kernel allocates this memory:

● SLUB allocator: used for small, commonly used objects

● Page allocator: handles larger, contiguous allocs (including slabs!)

● We also need to consider what actions are done on the freed memory

● As well as how reachable/triggerable the UAF is and any timing issues

Exploiting UAFs | Mitigations

Ubuntu 22.04 (5.15) kCTF (6.1) Pixel 7 (5.10)

init_on_alloc default default default

SLAB_FREELIST_RANDOM default default default

SHUFFLE_PAGE_ALLOCATOR default not set default

STATIC_USERMODEHELPER not set not set default

no unpriv userfaultfd OR
FUSE

FUSE neither enabled neither unpriv*

slab_nomerge not set default default

Exploiting UAFs | Realising Our Goal

● Need an object to replace our freed one

● Such that actions done on it give us further kernel primitives/priv esc

● CodeQL is a useful tool here to query specific obj criteria (size, offsets etc.)

● Then we need to make sure our object(s) ends up where its supposed to…

● i.e. we need to understand how to control the memory layout

Exploiting UAFs | Shaping General Purpose Caches

● Different gfp_t flags may be allocated
into different general purpose caches

● E.g. GFP_KERNEL_ACCOUNT, used for
objects containing user data

● Elastic objects provide us with a generic
approach, usable across cache sizes

● Cache noise is also an important factor in
tuning the reliability of your heap spray

● FUSE can open up more allocation
possibilities by allowing us to keep more
ephemeral object allocations in memory[8]

$ sudo slabtop

API example for general purpose allocs

Exploiting UAFs | Shaping Private Caches

● Same goal as before, except...

● These caches only contain specified obj

● But… the slabs that make up private and
general purpose caches are allocated the
same way, by the buddy allocator

● With a bit more work, tuning and luck it’s
possible to have the slab containing freed
private obj to be reallocated as a slab for a
general purpose cache

● AKA cross-cache attacks

API example for private cache allocs

$ sudo slabtop

Exploiting UAFs | Shaping The Buddy (Page) Allocator

● Goal is the same, just need to remember the different structure!

● Used for large dynamic buffers (GPU, packet ring buffers), slabs

● Need to mitigate noise from chunks merging

● If lower order is empty, chunks are split

● If higher order is empty, contiguous chunks merged

● May also want to ensure contiguity of multiple allocations

● CVE-2022-32250[5] was a UAF in Netfilter:

Exploiting UAFs | A Real World Example

Root shell

UAF of nft_expr

Heap & KASLR
Leak

corrupt
posix_msg_tree_node

UAF of nft_expr OOB Read

UAF of nft_expr corrupt
posix_msg_tree_node

UAF of nft_expr AAW

overwrite
modprobe_path

Exploiting OOB Writes | What Bounds?

● Different kinds out-of-bounds writes in the kernel…

● Array indexes, heap overflows, stack overflows etc.

● However this list may be shorter after we factor in mitigations...

Exploiting OOB Writes | Mitigations

Ubuntu 22.04 (5.15) kCTF (6.1) Pixel 7 (5.10)

FORTIFY_SOURCE default default default

UBSAN UBSAN_TRAP not set not set default

SLAB_FREELIST_HARDENED default not set default

STATIC_USERMODEHELPER not set not set default

Exploiting OOB Writes | Heap Overflows It Is

● As we’re dealing with the heap: how is our object allocated?

● Now interested in what’s adjacent to our object:

● Another object we can corrupt?

● The freelist pointer for the slab?

● Another buddy allocated chunk?

● What is the extent of our overflow? Controlled size/data?

● With all this info, we can find a suitable candidate to corrupt

Exploiting OOB Writes | Getting To The Finish Line

● Want to pivot from our initial OOB write primitive

● Elastic objects are a popular target

● E.g. msg_msg can be used to pivot from an OOB write to AAW[6]

● Cross-cache attacks open up possible targets to sensitive, otherwise
inaccessible corruption targets

● modprobe_path is still an easy target to privesc with an AAW

● CVE-2022-0185[7] was a heap overflow in fsconfig(2):

Exploiting OOB Writes | A Real World Example

OOB Write msg_msg len
corruption

KASLR leak

OOB Write msg_msg next
corruption

Root shell

overwrite
modprobe_path

OOB Read

AAW

FUSE

Exploiting Race Conditions

● Typically enable other bugs, such as use-after-frees

● But can be hard to debug; how do we know we’re even winning the race?!

● Printk debugging (or other kernel instrumentation, e.g. sleeps to widen the race)😎

● Gdb scripts can also make life easier here

● And if we can win it, what if the odds are super low?

● FUSE (or userfaultfd on older systems) may be an option for hanging kernel execution

● Alternatively, user-triggerable interrupts (e.g. timers) can widen race condition too[11]

● Be considerate of the little gotchas

● Execution contexts? Locks? Who’s executing what, when? CPU affinity? etc.

Tux’s Security Future
Some Thoughts On Future Impacts to Kernel Security

Looking Ahead

New
Mitigations

New
Technologies

Attitude to
Security

Kernel Security

Looking Ahead | New Mitigations

● kCTF experimental mitigations[10]:

● KMALLOC_SPLIT_VARSIZE: mitigate generic direct object reuse via elastic
objects (looking at you msg_msg!)

● SLAB_VIRTUAL: mitigate cross-cache attacks by reworking slab mem use

● Worth noting that many proprietary mitigations don’t yet have mainline
equivalents (e.g. grsec’s AUTOSLAB)

● Lag between mainline mitigation support & hardware adoption

● E.g. Intel’s CFI (CET) support was introduced in their 11th Gen CPUs (2021)

Looking Ahead | New Technologies (AKA Rust)

● Yep, it’s Rust time

● Initial support released in kernel version 6.1

● Memory safety built-in as opposed to being bolted on

● Where 66% of kernel security issues are memory safety related (2019)[9]

● However, Rust is still a tool used by people, and we make mistakes!

Looking Ahead | Attitude to Security

● Finding the balance between performance/usability and security

● When to include, and default, particular mitigations?

● Most of the topics mentioned today have mitigations

● Fostering open and accessible environment for security research

● Public research and sharing can drive innovation and improvements

● Vs. malicious actors who are happy to keep all this in the shadows

● Still friction in the handling of security fixes & disclosures

Wrapping Up
Thank You! Feel Free To @ Me Online/Offline

Resources

● https://github.com/xairy/linux-kernel-exploitation

● https://github.com/a13xp0p0v/linux-kernel-defence-map

● https://sam4k.com (any talk updates will be posted here!)

● https://codeql.github.com

● https://github.com/google/syzkaller

https://github.com/xairy/linux-kernel-exploitation
https://github.com/a13xp0p0v/linux-kernel-defence-map
https://sam4k.com/
https://codeql.github.com/
https://github.com/google/syzkaller

Refs

1. https://github.com/a13xp0p0v/kconfig-hardened-check/

2. https://cateee.net/lkddb/web-lkddb/

3. https://github.com/cloudsecurityalliance/gsd-database

4. https://github.com/torvalds/linux

5. https://blog.theori.io/research/CVE-2022-32250-linux-kernel-lpe-2022/

6. https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html

7. https://www.willsroot.io/2022/01/cve-2022-0185.html

8. https://exploiter.dev/blog/2022/FUSE-exploit.html

9. https://static.sched.com/hosted_files/lssna19/d6/kernel-modules-in-rust-lssna2019.pdf

10.https://github.com/thejh/linux/blob/slub-virtual-v6.1-lts/MITIGATION_README

11.https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

https://github.com/a13xp0p0v/kconfig-hardened-check/
https://cateee.net/lkddb/web-lkddb/
https://github.com/cloudsecurityalliance/gsd-database
https://github.com/torvalds/linux
https://blog.theori.io/research/CVE-2022-32250-linux-kernel-lpe-2022/
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://exploiter.dev/blog/2022/FUSE-exploit.html
https://static.sched.com/hosted_files/lssna19/d6/kernel-modules-in-rust-lssna2019.pdf
https://github.com/thejh/linux/blob/slub-virtual-v6.1-lts/MITIGATION_README
https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

