No Tux Given

Diving Into Contemporary
Linux Kernel Exploitation

Sam Page, #TyphoonCon23

About Me

e Sam (@sam4k1l)
 Background in VR and exploit dev

« | like Linux, security, games & food

What Are We Doing Here?

« Exploring the past, present & future of kernel security & xdev
 Hopefully making an increasingly complex topic more accessible

« Do we need any more reasons??? This stuff is awesome!

Tl;dr kernel exploits??

Tl;dr kernel exploits??

bug(s) » alter kernel state » privileged action

stack buffer overflow control-flow hijacking elevated process privs

Tl;dr kernel exploits??

> AAW

OOB Write

Tux’s Security Past

Examining Historical Kernel Exploitation Trends

Total Mitigatory Kconfig Opts

Mitigations

140
120
100
80
60
40

20

2005

2010

Year

2015

2020

Data: kconfig-hardened-check!!, LKDDb!!

Mitigations

140
120

9

jo 3

o]

o 100

de—

c

o

™}

= 80

=]

-

14

2 60

=

g StackGuard

o 40
20

0
A,
1998 2005 2010 2015 2020

Year

Data: kconfig-hardened-check!!, LKDDb!!

1998

Total Mitigatory Kconfig Opts

Mitigations

140

120

100

80

60

40

Sta;}gGuard

20

2005

2010

Year

2015

2020

Data: kconfig-hardened-check!!, LKDDb!!

1998

Total Mitigatory Kconfig Opts

Mitigations

140
120
100
80
60
40

Sta;}gGuard

20

2005

2010 2015

Year

2020

Data: kconfig-hardened-check!!, LKDDb!!

1998

Total Mitigatory Kconfig Opts

Mitigations

140
120
100
80
60
40

Sta;}gGuard

20

2005

2010 2015

Year

2020

Data: kconfig-hardened-check!!, LKDDb!!

1998

Total Mitigatory Kconfig Opts

Mitigations

140
120
100
80
60
40

Staquuard

20

2005

FORTIFY_SOURCE

KASLR

SMAP :
SMEP \

- R ‘
o - <
A
2010 2015

Year

2020

Data: kconfig-hardened-check!!, LKDDb!!

cves published

Bug Trends

500
400
300
200

100

2000 2005 2010 2015 2020

year

Data: gsd-databasel®

Year

Bug Trends

Sources
CVEs
500 Security Fixes
400
300
200
100
0
2000 2005 2010 2015 2020
Hits

Data: gsd-databasel®, torvalds/linuxt

Bug Trends

Top CWEs 2010

Resource Mgmt Errs

Null Deref

Info Leak

Input Val

Other

Top CWEs 2015

Resource Mgmt Errs

Code

Buffer Bounds Memes

Race Condition

Perms, Privs, Access Ctrls

Use After Free

Top CWEs 2020

Race Condition

Out-of-bounds Write

Data: gsd-databasel?!

Tux’'s Security Present

Looking At Contemporary Kernel Exploitation

Kernel EXplOitS In 2023 | The Process

The process of getting from bug to privesc has become more complex:
1) Need to understand the attack surface
2) Find yourself some bugs (ezpz right?)
3) Figure out how, and what you need, to exploit it
» Typically takes knowledge of platform/surface/bug and existing techniques

4) Actually get a (reliably??) working proof-of-concept

Kernel Exploits in 2023 | the mindset

Curiosity! Ask questions and take the time to understand

Patience helps too, as sometimes there are no solutions

Document, document, document! You'll thank yourself

Opt for generic tooling and techniques where possible, to reuse

The kernel is unforgiving of mistakes and unexpected behaviour!

Understanding The Attack Surface

* Informs where to look for bugs, what to look for and how to exploit them
« Lots of factors to consider: Kconfig, arch, platform specifics, 3™ parties etc.

« Varies greatly across desktop, android, ol kconfig-hardened-check results

ONEDOES NOT SIMPLY

0 < Rk

ENABLE IMPORTANT
SECURITY FEATURES BY DEFAULT

Flndlng Some BugS | Approaches

Doesn't have to be 0days! Syzbot dashboard, silent fixes, n-days etc.

QEMU + gdb make it easy to dig deeper and do some dynamic analysis

Time spent understanding the bug & surface will help going forward

Factor in surface/mitigations when thinking about what to look for

Finding Some Bugs | Tools & Tips

But if you do want a shiny Oday there's. ..
 Good ol' fashioned code auditing
 CodeQL to help flag areas of interest or check for specific patterns

 Spin up your own modified syzkaller instance
« Adding coverage for areas without descriptions (e.g. 3" party drivers)

« Extending coverage for more tailored fuzzing using platform knowledge

From Bug To #

Bug provides our initial primitive

Generic techniques & strategies to leveraging particular primitives

With each surface/bug often having its own nuances & requirements

Goal Is to chain these together to ultimately privesc

« Typically via elevating our procs privs or executing another bin with privs

EXplOItlng UAFs | Getting Our Bearings

« Can cause the kernel to do some action(s) on previously freed memory

« SO we need to think about how the kernel allocates this memory:

EXpIOItlng UAFs | Getting Our Bearings

« Can cause the kernel to do some action(s) on previously freed memory

« SO we need to think about how the kernel allocates this memory:

 SLUB allocator: used for small, commonly used objects

full slabs
Cac”lfmfgfb?géi 512 > obj | obj | obj | obj | obj | obj | obj | obj »{ obj | obj | obj | obj | obj | obj | obj | obj F—»
[[3 [3 .
partially full slabs
b ohj ohj obj obj » obj obj obj obj | obj —
I N 1

free slabs

b
h 4

EXpIOItlng UAFs | Getting Our Bearings

« Can cause the kernel to do some action(s) on previously freed memory

« SO we need to think about how the kernel allocates this memory:

« Page allocator: handles larger, contiguous allocs (including slabs!)

free_area[MAX_ORDER]

0 o free area | order-0 free | order-0 free order-0 free
- chunk chunk chunk
1 >
2 »> free_area > order-2 free chunk >
A
MAX_ORDER » free_area > order-MAX_ORDER free chunk

A

(Where chunk size = 2°der * PAGE SIZE)

EXplOItlng UAFs | Getting Our Bearings

Can cause the kernel to do some action(s) on previously freed memory

So we need to think about how the kernel allocates this memory:

 SLUB allocator: used for small, commonly used objects

« Page allocator: handles larger, contiguous allocs (including slabs!)

We also need to consider what actions are done on the freed memory

As well as how reachable/triggerable the UAF is and any timing issues

EXplOItlng UAFs | Mitigations

Ubuntu 22.04 (5.15)

kCTF (6.1)

Pixel 7 (5.10)

init on alloc

SLAB _FREELIST RANDOM

SHUFFLE PAGE_ALLOCATOR

STATIC USERMODEHELPER

no unpriv userfaultfd OR
FUSE

slab nomerge

Exploiting UAFS | reaiising our Goal

 Need an object to replace our freed one
* Such that actions done on it give us further kernel primitives/priv esc

« CodeQL is a useful tool here to query specific obj criteria (size, offsets etc.)
« Then we need to make sure our object(s) ends up where its supposed to...

* |.e. we need to understand how to control the memory layout

EXpIOItlng UAFs | Shaping General Purpose Caches

Different gfp t flags may be allocated
into different general purpose caches

 £.g GFP_KERNEL ACCOUNT, used for
objects containing user data

o0

0BJS ACTIVE USE OBJ SIZE SLABS 0BJ/SLAB CACHE SIZE NAME

Elastic objects provide us with a generic
approach, usable across cache sizes $ sudo slabtop

Cache noise Is also an important factor in
tuning the reliability of your heap spray e

vold *kmalloc(size_t size, gfp_t flags);
void kfree(const void *objp);

FUSE can open up more allocation
possibilities by allowing us to keep more T BT T T WV 6
ephemeral object allocations in memory!®

EXpIOItlng UAFs | Shaping Private Caches

« Same goal as before, except...

LN

struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, [Th e S e C a C h e S O n | y C O nta | n S p eC | ﬁ e d O bJ

unsigned int align, slab_flags_t flags,

void (*ctor)(void *));
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags); .
void kmem_cache_free(struct kmem_cache *s, vogldp*objp)i [] But . th e S | a bS th at m a ke u p p rl \/ate a n d
general purpose caches are allocated the

same way, by the buddy allocator

APl'example for private cache allocs

o0

0BJS ACTIVE USE 0BJ SIZE SLABS 0BJ/SLAB CACHE SIZE NAME ® \Nlth a blt mor—e Work, tunlng and |UC|< |t’S

99% 019K 55952 21 143808K dentry . . .
0.03K 3852 15408K _poli b | t h th | b t g f d
3 0 s 0.57K 12260 196160K :gzixﬁgr:e;ilnode p O S S | e O a v e e S a C O n a | n | n re e
272944 272913 % 1.12K 9748 311936K btrfs_inode

private obj to be reallocated as a slab for a

6 134497 % 0.01K 518 2072K 1sm_file_cache
206808 198880 B 0.14K 7386 29544K btrfs_extent_map g | p p h
138560 117011 & 0.06K 2165 8660K dmaengine-unmap-2 e n e ra U r O S e C a C e
123100 122135 % 0.16K 4924 19696K vm_area_struct
747529873535 % 0.06K 1168 4672K anon_vma_chain

« AKA cross-cache attacks
$ sudo slabtop

EXpIOltl ng UAFs | Shaping The Buddy (Page) Allocator

Goal Is the same, just need to remember the different structure!

Used for large dynamic buffers (GPU, packet ring buffers), s/labs

Need to mitigate noise from chunks merging
* If lower order is empty, chunks are split

 If higher order is empty, contiguous chunks merged

May also want to ensure contiguity of multiple allocations

L N

struct page *alloc_pages(gfp_t gfp, unsigned int order);
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);

void __free_pages(struct page *page, unsigned int order);
void free_pages(unsigned long addr, unsigned int order);
static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);

EXplOItlng UAFs | A Real World Example

e CVE-2022-32250P1 was a UAF Iin Netfilter:

corrupt
—» UAFofnft.expor —p» UAFofnft_expor ———P 00SiX_Msg._tree_node —> OOB Read

Heap & KASLR
Leak

corrupt 44
P> UAFofnftexpr P UAFofnft_expr B o0gy meg tree node AR

overwrite

Root shell <+ modprobe_path

Exploiting OOB Writes | what sounds?

e Different kinds out-of-bounds writes in the kernel. ..

« Array indexes, heap overflows, stack overflows etc.

« However this list may be shorter after we factor in mitigations. ..

EXplOItlng O0OB Writes | Mitigations

Ubuntu 22.04 (5.15) kCTF (6.1) Pixel 7 (5.10)

FORTIFY SOURCE

UBSAN

SLAB FREELIST HARDENED

STATIC USERMODEHELPER

EXplOItlng OOB Writes | Heap Overflows It Is

As we're dealing with the heap: how Is our object allocated?

Now interested in what's adjacent to our object:
 Another object we can corrupt?
* The freelist pointer for the slab?

 Another buddy allocated chunk?

What is the extent of our overflow? Controlled size/data?

With all this info, we can find a suitable candidate to corrupt

EXp|OIt|ng OOB Writes | Getting To The Finish Line

Want to pivot from our initial OOB write primitive

Elastic objects are a popular target

« £E.g. msg msg can be used to pivot from an OOB write to AAW!!

Cross-cache attacks open up possible targets to sensitive, otherwise
Inaccessible corruption targets

modprobe path is still an easy target to privesc with an AAW

EXplOItlng OOB Writes | A Real World Example

« CVE-2022-0185"" was a heap overflow in fsconfig(2):

OOB Write —P

msg_msg len
corruption —p OOB Read —P KASLR leak

m/sg_msg next

corruption

> AAW

i

overwrite
modprobe path

i

Root shell

OOB Write

FUSE

Exploiting Race Conditions

Typically enable other bugs, such as use-after-frees

But can be hard to debug; how do we know we're even winning the race?!
« Printk debugging © (or other kernel instrumentation, e.g. sleeps to widen the race)

» Gdb scripts can also make life easier here

And If we can win it, what if the odds are super low?
« FUSE (or userfaultfd on older systems) may be an option for hanging kernel execution

« Alternatively, user-triggerable interrupts (e.g. timers) can widen race condition toot*!

Be considerate of the little gotchas

* Execution contexts? Locks? Who's executing what, when? CPU affinity? etc.

Tux’'s Security Future

Some Thoughts On Future Impacts to Kernel Security

Looking Ahead

LOOking Ahead | New Mitigations

 KCTF experimental mitigationstto:

 KMALLOC SPLIT VARSIZE: mitigate generic direct object reuse via elastic
objects (looking at you msg msg!')

« SLAB VIRTUAL: mitigate cross-cache attacks by reworking slab mem use

« Worth noting that many proprietary mitigations don't yet have mainline
equivalents (e.g. grsec's AUTOSLAB)

* Lag between mainline mitigation support & hardware adoption
« E.g Intel's CFI (CET) support was introduced in their 11" Gen CPUs (2021)

LOOking Ah ead | New Technologies (AKA Rust)

Yep, it's Rust time

Initial support released in kernel version 6.1

Memory safety built-in as opposed to being bolted on

Where 66% of kernel security issues are memory safety related (2019)P!

However, Rust is still a tool used by people, and we make mistakes!

Looki ng Ahead | Attitude to Security

* Finding the balance between performance/usability and security
« When to include, and default, particular mitigations?
* Most of the topics mentioned today have mitigations
« Fostering open and accessible environment for security research
e Public research and sharing can drive innovation and improvements
* \VVs. malicious actors who are happy to keep all this in the shadows

« Still friction in the handling of security fixes & disclosures

Wrapping Up

Thank You! Feel Free To @ Me Online/Offline

Resources

https://github.com/xairy/linux-kernel-exploitation

https://github.com/al3xp0p0v/linux-kernel-defence-map

https://sam4k.com (any talk updates will be posted here!)

https://codeql.github.com

https://github.com/google/syzkaller

https://github.com/xairy/linux-kernel-exploitation
https://github.com/a13xp0p0v/linux-kernel-defence-map
https://sam4k.com/
https://codeql.github.com/
https://github.com/google/syzkaller

Refs

8.

9.

. https://github.com/al3xp0p0v/kconfig-hardened-check/

. https://cateee.net/Ikddb/web-lkddb/

. https://github.com/cloudsecurityalliance/gsd-database

. https://github.com/torvalds/linux

. https://blog.theori.io/research/CVE-2022-32250-linux-kernel-lpe-2022/

. https://www.willsroot.i0/2021/08/corctf-2021-fire-of-salvation-writeup.html

. https://www.willsroot.i0/2022/01/cve-2022-0185.html

https://exploiter.dev/blog/2022/FUSE-exploit.html

https://static.sched.com/hosted files/Issnal9/d6/kernel-modules-in-rust-Issna2019.pdf

10 https://github.com/thejh/linux/blob/slub-virtual-v6.1-1ts/MITIGATION README

11 https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny. html

https://github.com/a13xp0p0v/kconfig-hardened-check/
https://cateee.net/lkddb/web-lkddb/
https://github.com/cloudsecurityalliance/gsd-database
https://github.com/torvalds/linux
https://blog.theori.io/research/CVE-2022-32250-linux-kernel-lpe-2022/
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://exploiter.dev/blog/2022/FUSE-exploit.html
https://static.sched.com/hosted_files/lssna19/d6/kernel-modules-in-rust-lssna2019.pdf
https://github.com/thejh/linux/blob/slub-virtual-v6.1-lts/MITIGATION_README
https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

